## \* Did not use Sigfigs\*

|         | Heat Test Review                                                                                                                                                       | 0                                     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| (1)     | How many calories are needed to heat water to 73.0 °C if you use 205 mL of cold                                                                                        |                                       |
|         | water at 18.0 °C 11, 775 (a)                                                                                                                                           |                                       |
| (2)     | How much heat in Joules is needed to raise the temperature of a 45.78 gram piece                                                                                       | e                                     |
|         | of aluminum from 14.0 °C to 68.0 °C? Chart page 509                                                                                                                    |                                       |
| 6       | What will the final temperature be if 3875 joules of heat is absorbed by 194 mL                                                                                        |                                       |
|         | of water at 35.7 °C? 4.78                                                                                                                                              |                                       |
|         | A piece of unknown metal weighing 67.56 grams and heated to 85.5 °C is placed                                                                                          |                                       |
| 4       | in 195 mL of cold water at 15.0 °C. The final temperature of the mixture is 21.0 °C. What is the specific heat of the matter? (I/v°C)                                  | 107/                                  |
|         |                                                                                                                                                                        | 1.12 7/g c                            |
| (-)     | How much energy is involved when 56.7 grams of water at 0.0 °C is changed to                                                                                           |                                       |
| コノ      | lice? Chart page 522                                                                                                                                                   |                                       |
| $\int $ | A piece of Aluminum with a mass of 31.45 g is heated to 90.0 °C. The hot metal                                                                                         | 2541-28                               |
|         | is then placed in 110.0 g of water at 21.0 °C. What is the final temperature of the                                                                                    | 459.90-1                              |
|         | system? (Hint: use X for FT) Chart-page 509  (3) $459$ (0) $-2$ (10) $9$ (4) $9$ (18)  What is the amount of heat (1) required to raise the temperature of 145.67 g of |                                       |
| (5)     | What is the amount of heat (J) required to raise the temperature of 145.67 g of                                                                                        | 12205=                                |
|         | iron by 10°C? Chart page 500                                                                                                                                           | N=25                                  |
|         | J= (145.67g)(10°C) (.46) = 670.13                                                                                                                                      |                                       |
|         | Calculate the energy required to produce 7.00 mol HCl on the basis of the                                                                                              |                                       |
| 1//     | following balanced equation.  Cl (a) + H (a) + $\rightarrow$ 2 HCl + 167.2 kCal  585. 7 kCal                                                                           |                                       |
|         | $Cl_2(g) + H_2(g) + \rightarrow 2 HCl + 167.2 kCal$ $Cl_2(g) + H_2(g) + \rightarrow 2 HCl + 167.2 kCal$ $Cl_2(g) + H_2(g) + \rightarrow 2 HCl + 167.2 kCal$            |                                       |
| CX      | when 10 g of ammonia ( $NH_3$ ) is converted to vapor at its boiling point, about how                                                                                  | 7                                     |
| 2       | much heat is absorbed? Chart page 522  Hess's Law problem:                                                                                                             | 7507                                  |
| 0):     | Hess's Law problem:                                                                                                                                                    | 3.0KJ                                 |
|         | Calculate $\Delta H$ for the reaction CH <sub>4</sub> (g) + NH <sub>3</sub> (g) $\rightarrow$ HCN(g) + 3 H <sub>2</sub> (g), from the reactions.                       | · · · · · · · · · · · · · · · · · · · |
|         | $-N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) \Delta H = -91.8 kJ$                                                                                                         |                                       |

much near 100 Mess's Law problem:

Calculate  $\Delta H$  for the reaction CH4 (g) + NH3 (g)  $\rightarrow$  HCN (g) + 3 H2 (g), from the reactions.

N2 (g) + 3 H2 (g)  $\rightarrow$  2 NH3 (g)  $\Delta H$  = -91.8 kJ

C (s, graphite) + 2 H2 (g)  $\rightarrow$  CH4 (g)  $\Delta H$  = -74.9 kJ/mole

H2 (g) + 2 C (s, graphite) + N2 (g)  $\rightarrow$  2 HCN (g)  $\Delta H$  = +270.3 kJ

Some definitions of key terms in the chapter.